ҧͧͧѭԧ

֧Ҿͧء ԧʹҧͧҧԵʵͧѭ֧¡ҧ

ѷԵԹ˹ҧԵѳ ҧ˹ѻԵԵѳͧԴԴ͹ҧѹ ͹ԵԵѳԴСͺѵԺ ٻ Ǩͺ ͹ԴͧԵѳ˹ҧѧ

˹Դ
ѵԺ ٻǨͺ
Դ 1 6 3 4
Դ 2 6 6 2

ӹǹªҧԵͧҹ͹ ˹ѻ˹ѧ

  • ѵԺ 420
  • ٻ 300
  • Ǩͺ 240

Թ˹˹ͧԵѳԴ 1 300 ҷ ˹˹ͧԵѳԴ 2 200 ҷ ѷصˡͧԹԵԵѳԴ 1 2 ҧ ֧٧ش ˹ͧѾҡ () ӡѴѧ ͧҺ ӹǹͧԵѳͧԴԵ˹ѻ ٧شӡѴͧ ѧ ԵѳԴ 1ӹǹ X1 ˹Դ 2 ӹǹ X2 ˹ : X1 0 , X2 0 (1) ҡҧѾҡ˹ ͹ѧѺͧѭѧ

͹ѧѺ : 6X1 + 6X2 420 (ӡѴͧѵԺ)
   3X1 + 6X2 300 (ӡѴͧٻ) (2)
   4X1 + 2X2 240 (ӡѴͧǨͺ)

ҧ˹ ͧѭٻ

: P = 300 X1 + 200 X2 = Max (3)

ͧҧԵʵ ͧѭͧ٧ش ѧѭѡɳ֧¡ ԧ٧ش ( Linear programming maximum problem) ѺѭԹش ( Linear programming minimum problem) ҡҧ

Ҥͧͧ˹ͧͧѷͧͧͧԵԴ պء ͧᴧ ѧ ӹǹԴԵѧҧ

ӹǹԵѹѹ
պءͧѧ
A 6 2 4
B 2 2 12

ѷѭͧ١˹ѻѧ

  պء                     ӹǹ 12 ѹ
  ͧ             ӹǹ    8 ѹ
  ѧ                ӹǹ 24 ѹ

عԵѹͧͧ A 40,000 ҷ ͧ B 32,000 ҷ ѷѴԵҧ֧ӹǹúѭ عԵش

ص ͧ A ҹ X1 ѹͧ B ҹ X2 ѹ/ѻ ѧ

         :   X1,  X2      0       (1)  

ҡҧʴմöͧͧ͹ѧѺ

   6X1 + 2X2         12   
   2X1 + 2X2           8         ....(2)
   4X1 + 12X2      24   

ҡعԵѹͧͧ

   C   =   40,000X1  +  32,000X2   =   Min      (3)  

ͧٻͧѭԧ ͺͧѭԧ


: ͡äԵʵ . Brand's Summer Camp 1998